当前位置: 主页 > > 内容

热门内容

五年级数学手抄报图片大全

时间:2017-09-20 00:40  来源:未知  作者:admin

  战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。

  但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

  当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时光处理一些的私事,因此打算出一道难题给学生。他的题目是:

  因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。也就能够藉此机会来处理未完的事情。但是才一转眼的时光,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地高斯。

  但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指。之后的高斯长大后,成为了一位很伟大的数学家。动情的线)

  鸡兔同笼这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》就记载了这个搞笑的问题。书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  这四句话的意思是:有若干只鸡兔同在一个里,从上方数,有35个头;从下方数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想明白《孙子算经》中是如何解答这个问题的吗?

  解答思是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果里有一只兔子,则脚的总数就比头的总数多1。

  因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。

  这一思新颖而奇特,其“砍足法”也令数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之,直到最终把它归成某个已经解决的问题。

相关推荐